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Abstract. The semiclassical Weyl series for an arbitrary-angle, zero-potential, circular-wedge
quantum billiard with Dirichlet boundary conditions is derived. The goal is to study the effect of
non-smooth boundaries on a conjecture of Berry and Howls (1994) concerning the high orders.
The dominant behaviour of the late terms is identified, together with correction terms. The
factorial-over-power and correction behaviour is found to be in accordance with an extension of
the work of Berry and Howls. As might be expected, the only dominant contributions from the
polygonal corner are to the ‘length’ and ‘constant’ terms of the Weyl series. The same is not
true for the other angles. Surprisingly, only one periodic orbit arising from the wedge geometry
affects the Weyl series for arbitrary angle of openingγ , although there is a subdominant residue
from a memory of the circular symmetry. The prefactor of this residue is proportional toγ .
Nevertheless, with one exception, the analytic behaviour of the Weyl series conspires to force
the appearance of only the expected wedge periodic orbits in the exponential corrections.

1. Introduction

Berry and Howls (1994) (hereafter called BH) formulated a conjecture about the structure
of the high orders of the semiclassical expansion of spectral functions pertaining to two-
dimensional quantum billiards of areaA with C∞ boundaries. Specifically, the regularized
resolvent (Voros 1992)

g(s) ≡ lim
N→∞

[ N∑
n=1

1

En + s2
− A

4π
ln

(
EN

s2

)]
(1)

was expanded in terms of the large energy variables = i
√
E as its Weyl series

g(s) ∼
∞∑
r=1

cr

sr
. (2)

(The periodic orbit corrections are exponentially small in this complex choice of scaled
energy variable. Other spectral functions can be related to the regularized resolvent by
transforms, Voros (1992).) Strong numerical evidence was given in several examples that

cr → α(r − β)!
lr

r →∞ (3)

wherel is the length of a periodic orbit associated with the classical billiard system. The
conjecture was based on a formal Borel summation of the leading-order behaviour (2) and
on formal resurgence results from exponential asymptotics (Dingle 1973, Voros 1983, Berry
and Howls 1991, Howls 1992). Whenl was a two-bounce orbit BH suggested a graphical
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selection mechanism, based on local boundary coordinates. It transpired thatl need not
be the shortest, most stable or even a real orbit. They also discussed several classes of
counterexamples.

The parametersα andβ were identified by comparison with the prefactor of the relevant
exponential periodic orbit contribution. Voros (1983) derived similar results for classes of
one-dimensional Schrödinger potentials, but his approach was based on the more complete
theory of resurgence (Ecalle 1981, 1984).

The reasons for considering the high orders go beyond pure mathematical interest
(Levitin 1997). The coefficientscr give values of spectral zeta functions at negative integer
values, which are important in field theoretic problems (Bordaget al 1996a, b, Elizalde
et al 1993, Lesduarte and Romeo 1994). Furthermore, if they can be calculated, the late
terms can provide an algebraic tool for deducing the local Riemann sheet structure of the
expansion for the resolvent, using a method outlined by Howls (1997). In turn, this can lead
to the identification of approximate functional equations satisfied by the spectral function
in question (Voros 1992, Howls and Trasler 1998). The latter technique is an extended
corollary of Voros (1983) and will be discussed elsewhere in the context of billiard systems.

In this paper we wish to study the conjecture for a billiard with a non-analytic boundary.
We choose to study a class of ‘cake wedge’ billiards without potentials, being angular sectors
of a unit radius circular billiard, satisfying (figure 1)

(−∇2+ s2)ψ(r) = 0 r ∈ � with ψ(r) = 0 r ∈ ∂�. (4)

We study all angles of opening 0< γ < 2π . (Dietz et al 1995 examined the relationship
between exterior and interior problems for such wedges.) Due to the high degree of
symmetry we do not claim that the results will be general, although they do appear to
confirm that a form of the conjecture may still hold for non-polygonal billiards with corner
contributions. In addition, subdominant contributions can be identified. Hence a more
complete conjecture† can be posed for the wedge billiard:

cr ∼
∑
j

∞∑
k=0

α
(j)

k (r − k − βj )!
lr−kj

r →∞. (5)

The j -sum is over a (formally possibly infinite) set of periodic orbitslj associatedwith the
classical system. (They may not in fact beactual periodic orbits of the classical system
itself, cf BH section 2c.) The parameters characterize the periodic orbitlj . A formal
Borel summation of the tail of eachk-series in thej -sum will generate a periodic-orbit-
like contribution according to BH section 1. This conjecture is examined in the context of
general billiard systems elsewhere (Howls and Trasler 1998). In section 2 we derive the
regularized resolvent of the cake wedge, before expanding out the Weyl series. In section 3
the coefficientscr are calculated. The dominant form of the latercr is identified and higher-
order corrections obtained. An analysis of other periodic orbit contributions to the Weyl
series follows in section 4. We conclude in section 5 with a discussion.

2. Calculation of the resolvent and Weyl series

For real energiesE, the eigenfunctions of the wedge are

ψmn(r, θ) = AmnJmπ/γ (r
√
Emn) sin(mπθ/γ ) (6)

† It could be argued that an expansion in 1/r would be more appropriate asymptotically. This is a common form
in field theory (Le Guillou and Zinn-Justin 1990). However, from results in resurgence (Dingle 1973, Balianet al
1979, Berry and Howls 1991) it transpires thatinverse factorial seriessuch as (5) are more intimately linked to
the analytic structure of the resolvent via the expansion in 1/s.
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Figure 1. The wedge billiard� with sectorial angleγ and two right angles between the line
segments and the arc.

with eigenvaluesEmn = j
(γ )
mn

2
, wherej (γ )mn is the nth zero of the Bessel functionJmπ/γ .

As in BH we shall work with complex energiess, the better for resolving the exponential
scales in the problem.

The eigenfunctions are known explicitly, so it is possible to use the Mellin–Barnes
techniques of Bordaget al (1996c) to calculate the required expansion. However, we
choose to use a Poisson summation method for two reasons. First, we find this approach
more favourable for comparison with the techniques and the results of BH section 3, which
allows for a clearer identification of the geometric origin of each contribution. Secondly,
due to the presence of corners, it illustrates the necessity for including all harmonics of the
Poisson sum, in order to resolve the corner contributions. The latter point is salutary, since
semiclassical expanders often neglect higher harmonics when seeking average properties,
even withC∞ boundaries, which can lead to great confusion (Waechter 1972, Kennedy
1978, Bordaget al 1996c).

We follow Stewartson and Waechter (1971) and BH by solving

(−∇2+ s2)G(r, r0, s) = δ(r − r0) r, r0 ∈ � (7)

for the Green functionG, subject to the conditions

G(r, r0, s) = 0 when

{
r (r0) = 1 06 θ (θ0) 6 γ
θ (θ0) = 0, γ 06 r (r0) 6 1.

(8)

The resolvent is then the trace

g(s) =
∫
�

dr lim
r0→r

χ G = G0+ χ. (9)

HereG0 is the free-space Green function,

G0 = 1

2π
K0(s|r − r0|) (10)

= 1

2π

∞∑
m=−∞

Im(sr)Km(sr0) eim(θ−θ0) r < r0 (11)

which satisfies (7) but not the boundary condition. The functionχ is a solution of
the homogeneous equivalent of (7) and cancels outG0 on the boundary. A Fourier
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representation of the total Green function in the wedge is given by

G(r, r0, s) = 2

γ

∞∑
n=1

an(r, r0, s) sin
nπθ

γ
sin

nπθ0

γ
(12)

where the coefficientsan(r, r0, s) satisfy the top two conditions of (8). A short calculation
gives

G(r, r0, s) = 1

γ

∞∑
n=−∞

I|n|π/γ (sr)
{
K|n|π/γ (sr0)− K|n|π/γ (s)

I|n|π/γ (s)
I|n|π/γ (sr0)

}
× sin

nπθ

γ
sin

nπθ0

γ
(13)

wherer < r0. Note that for technical reasons we have extended the result so that then-sum
runs over all integer values. Hence we have

lim
r→r0

χ = 1

γ

∞∑
n=−∞

I|n|π/γ (sr)
{
K|n|π/γ (sr)− K|n|π/γ (s)

I|n|π/γ (s)
I|n|π/γ (sr)

}
sin2 nπθ

γ

− 1

2π

∞∑
m=−∞

Im(sr)Km(sr). (14)

To find the resolvent we need to integrate (14) over the billiard. The term in the square
of the Bessel functionI presents no problems, but the product ofI with K needs greater
attention. We want to evaluate (Watson 1948)∫

drrIm(sr)Km(sr) = r2

2

{(
1+ m2

(sr)2

)
Im(sr)Km(sr)− I ′m(sr)K ′m(sr)

}
(15)

over 06 r 6 1. The value of the lower limit is not immediately obvious: we use the
small-argument asymptotics of the Bessel functions (Olver 1974) to examine it. For small
z andp > 0 (the functions are even with respect to integer order),

Ip(z) ∼ (z/2)p

p!
(16)

Kp(z) ∼ (p − 1)!

2(z/2)p
K0(z) ∼ − ln z. (17)

Applying these facts with (15) in mind, we have the following limits:

lim
r→0

r2Ip(sr)Kp(sr) = 0 (18)

lim
r→0

p2

s2
Ip(sr)Kp(sr) = |p|

s2
(19)

lim
r→0

r2I ′p(sr)K
′
p(sr) = −

|p|
s2
. (20)

(Note that in the above, ifp is negative, it must be an integer. However, this problem is
circumvented in what follows.) The radial integrals are therefore∫ 1

0
dr rIm(sr)Km(sr) = 1

2

{(
1+ m

2

s2

)
Im(s)Km(s)− I ′m(s)K ′m(s)−

|m|
s2

}
(21)∫ 1

0
dr rI 2

m(sr) =
1

2

{(
1+ m

2

s2

)
Im(s)Km(s)− I ′m(s)K ′m(s)−

I ′m(s)
sIm(s)

}
. (22)
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The angular integration (over 06 θ 6 γ ) is trivial and we obtain

g(s) = 1

4

∞∑
n=−∞

(1− δn0) {f ∗|n|π/γ (s)− f|n|π/γ (s)} −
γ

4π

∞∑
m=−∞

f ∗m(s) (23)

where (cf BH equation (54))

fp(s) =
(

1+ p
2

s2

)
Ip(s)Kp(sr)− I ′p(sr)K ′p(sr)−

I ′p(s)

sIp(s)
(24)

f ∗p (s) = fp(s)+
I ′p(s)
sIp(s)

− |p|
s2

(25)

andδpq is the Kronecker delta. This may be rearranged to give

g(s) = 1

4

∞∑
n=−∞
{f ∗|n|π/γ (s)− f|n|π/γ (s)} −

γ

4π

∞∑
m=−∞

f ∗m(s)−
I ′0(s)

4sI0(s)
. (26)

To obtain a computable expansion, we apply the Poisson sum formula (BH equation (53))
∞∑

n=−∞
hn(s) =

∞∑
µ=−∞

∫ ∞
−∞

dn hn(s) e2π inµ (27)

to (23), after extracting the Kronecker delta. A few manipulations reveal

g(s) = γ

2π

∞∑
µ=−∞

∫ ∞
0

dm{[f ∗m(s)− fm(s)] e2γ imµ − f ∗m(s) e2π imµ} − I ′0(s)
4sI0(s)

. (28)

This can be decomposed into three parts

g(s) = A + B+ C (29)

where

A = − I ′0(s)
4sI0(s)

(30)

B = γ

π

∞∑
µ=1

∫ ∞
0

dm

{(
I ′m(s)
sIm(s)

− m

s2

)
cos 2γmµ− f ∗m(s) cos 2πmµ

}
(31)

C= − γ

2π

∫ ∞
0

dmfm(s). (32)

We identify C as a fraction (γ /2π ) of the algebraic part of the resolvent (i.e. the Weyl
series) for the circle billiard (cf BH section 3 equations (53) and (54)), a fact we will exploit
in our calculation of the coefficients for the wedge. After Poisson summation, the terms
involving the productsIm(s)Km(s) andI ′m(s)K

′
m(s) only contribute toc2. This fact was not

pointed out by BH.
To identify the role of the term B we expand the Bessel functions to leading order in

1/s (Abramowitz and Stegun 1972):

I ′m(s)
sIm(s)

∼
√
m2+ s2

s2
. (33)

Making the substitutionxs = m, integrating twice by parts and using the identity
(Gradshteyn and Ryzhik 1965)∫ ∞

0
dx

cosqx

(1+ x2)3/2
= qK1(q) (34)

⇒
∫ ∞

0
dx(

√
1+ x2− x) cosqx = 1

q2
− K1(q)

q
(35)
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we have B in the form

B ∼ γ

π

∞∑
µ=1

{(
1

(2γµs)2
− 1

(2πµs)2

)
−
(
K1(2γµs)

2γµs
− K1(2πµs)

2πµs

)}
+ · · · (36)

= π2− γ 2

24πγ
− γ
π

∞∑
µ=1

{
K1(2γµs)

2γµs
− K1(2πµs)

2πµs

}
+ · · · . (37)

A short calculation (appendix A) shows the Bessel series give a contribution at
O(e−lss−3/2), l = 2π, 2γ , and so they do not contribute to the Weyl series.

Term A is evaluated by replacing the Bessel functions by their asymptotic expansions
for large arguments (appendix B), leading to a formal power series in 1/s.

In total, the first two terms of the Weyl series are then

g(s) = −2+ γ
8s
+
{
γ

12π
+ 1

8
+ π

2− γ 2

24πγ

}
1

s2
+O

(
1

s3

)
. (38)

The results of McKean and Singer (1967), Stewartson and Waechter (1971) state that for a
two-dimensional billiard with a piecewise smooth Dirichlet boundary of lengthL, curvature
κ(σ ) and corners of internal angleγi ,

g(s) = − L
8s
+
{

1

12π

∮
dσ κ(σ )+

∑
i

c(γi)

}
1

s2
+O

(
1

s3

)
(39)

with the corner contributions given by

c(η) = π2− η2

24πη
0< η < 2π. (40)

To reconcile (38) and (39), we observe that the perimeter of the wedge has lengthL = 2+γ
and internal anglesγ0 = γ , γ1 = γ2 = π/2. The curvature integral vanishes on the radial
portions.

It is clear that there are natural geometrical interpretations for the three contributions
to cr from (29). Identifying the features of the boundary, namely the line segments, arc,
polygonal and other corners, we can trace their appearances in the highly-geometrical early
terms of (38) back to the components A, B and C.

Term C is an echo of the circular symmetry in the wedge, describing the curved section
of the boundary and the area of the shape. Further information about the sectorial angleγ

appears through term B, although it is only relevant toc2 in the Weyl series. Finally, the
radial lengths (seen inc1) and the right angles (c2) are accounted for in term A.

We might have expectedγ not to appear in the late terms, since the wedge is locally
polygonal there and Weyl series truncate at finite orders for polygons (Baltes and Hilf 1976).
In fact it does influences the highcr , but only through a ‘false’ subdominant memory of
the circle.

3. Preliminary results

Formally expanding terms A and C as power series in 1/s (appendix B, BH equations
(55)–(58)) and adding in term B, we obtain the coefficientscr for arbitrary γ using
Mathematica. The first few coefficients are shown in table 1.

First we restrict our attention to the dominant form of the conjecture (3), (cf (5)) and
obtain numerical estimates of the relevantα, β andl. Subdominant contributions to the full
conjecture (5) from other periodic orbits are considered in section 4.
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Table 1. The first ten coefficients of the Weyl series for the wedge billiard with sectorial angle
γ and Dirichlet boundary.

r cr

1 −2+ γ
8

2
3π + 2γ

24π

3
16+ γ

512

4
315π + 32γ

10080π

5
6400+ 111γ

131072

6
585 585π + 17408γ

576 5760π

7
1 098 752+ 5705γ

4 194 304

8
499 534 035π + 4 468 736γ

620 780 160π

9
24 624 037 888+ 38 306 807γ

8 589 934 592

10
1 405 307 919 015π + 3 731 881 984γ

120 942 581 760π

A strictly numerical estimate forα is only possible with prior knowledge ofβ and l.
To that end, if (3) holds then, for a specific large value ofr,

τ(r) ≡ crcr−2

c2
r−1

∼ r − β
r − β − 1

(41)

and hence we obtain the approximation

β = τ/(τ − 1)+O(1/r). (42)

A graph of τ/(τ − 1) againstr should therefore asymptote to the valueβ. This is shown
in figure 2 for several choices ofγ . Numerically we see that in all the graphsβ ' 2.

The equalityβ = 2 is justified analytically later. Assuming this result, we can findl by
considering the slope of the function

− ln

(
cr

(r − 2)!

)
∼ r ln l − lnα (43)

plotted againstr. This is plotted in figure 3 for a variety of angles. It emerges thatl ' 2,
again apparently independent ofγ . The length 2 corresponds to an orbit which bounces
once on the circular boundary and once in the corner of angleγ .

We obtain an approximation forα by plotting 2rcr/(r − 2)! againstr. Figure 4 shows
graphs of this function: we findα ' 0.317, once more independent ofγ and approximately
equal to 1/π .

It appears that the leading-order, late-term behaviour of the Weyl coefficients is
insensitive to the sectorial angle. Closer examination of the resolvent shows this must
be the case.
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Figure 2. The value of the function in (42) againstr for sectorial anglesγ = π/6 (bottom set
of points), 2,π and 4 (top). The difference at high orders is so slight that a graph of the first
30 terms is given by way of magnification.

We have already observed that term C reduces to a fraction of the (algebraic) Weyl
series for the circle billiard. BH demonstrated that, to leading order, the coefficients there
followed (3) with l = 4, while for the wedge billiards we havel = 2. Moreover, term C is
γ -dependent. These two pieces of evidence imply that term C is not the controlling factor
in high orders of the wedge Weyl series.

Term B does not affect the late terms and so term A, the ratio of Bessel functions,
must be responsible for the behaviour we have found above. Therefore we isolate term A
and attempt to justify the conjecture (5) forl = 2, by estimating some of the higherα(2)k .
Henceforth we will use the labelj = 2 to refer to this (dominating) orbit and identifyα(2)0 ,
β2 and l2 with theα, β and l respectively of (3).
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Figure 3. The function (43) againstr for γ = π/6, 2, π and 4. A straight line of slope
corresponding tol = 2 has been superimposed to obviate the agreement.

Figure 4. Crude estimates forα are obtained simply by accounting for the other (factorial and
power) behaviour in the late-terms conjecture (3). The straight line corresponds toα = 1/π .
Plotted forγ = π/6, 2,π and 4.

Assuming form (5), we follow Voros (1983, appendix A) and use a Neville table
procedure to estimateα(2)k andβ2 (appendix C). The results are presented in table 2. The
values obtained for the first four terms,α(2)0 to α(2)3 , are extremely close to fractions of 1/π ,
which suggests that

cr ∼ 1

π

(r − 2)!

2r
− 1

4π

(r − 3)!

2r−1
− 3

32π

(r − 4)!

2r−2
− 13

128π

(r − 5)!

2r−3
− · · · . (44)

This result can be justified analytically from a direct expansion of the recurrence
relation (B.4). This costly calculation is carried out in appendix D.
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Table 2. The Neville table producing values for the first fourα(2)k . Errors are still small even
at the fourth level of the iteration. The values are found to be approximately equal to 1/π ,
−1/4π , −3/32π and−13/128π , reading across the bottom of the table.

p α
(2)
0 α

(2)
1 α

(2)
2 α

(2)
3

1 0.316 673 006−0.080 207 151−0.030 539 432−0.033 498 262
2 0.318 323 322−0.079 562 229−0.029 815 409−0.032 269 575
3 0.318 309 549−0.079 578 063−0.029 842 913−0.032 332 215
4 0.318 309 900−0.079 577 440−0.029 841 459−0.032 328 042
5 0.318 309 885−0.079 577 474−0.029 841 560−0.032 328 396
6 0.318 309 886−0.079 577 471−0.029 841 552−0.032 328 360
7 0.318 309 886−0.079 577 472−0.029 841 552−0.032 328 365
8 0.318 309 886−0.079 577 472−0.029 841 552−0.032 328 365
9 0.318 309 886−0.079 577 472−0.029 841 552−0.032 328 365

10 0.318 309 886−0.079 577 472−0.029 841 552
11 0.318 309 886−0.079 577 472
12 0.318 309 886

4. Other orbit contributions to the Weyl series

In this section we investigate other contributionslj to (5). First we recall some information
about the circle.

Truncating the Weyl series at the least termr∗ and Borel-summing the late terms, BH
wrote the remainder in terms of an error function:

R(s) ' iπα

(ls)β−1
e−lserf

(
i(r∗ − ls)√

2r∗

)
. (45)

To find the prefactorα in (3), they exploited the Stokes phenomenon experienced by the last
term (alone) infm(s) ass is rotated in the complex plane to real values of energyE (Berry
1989). The leading exponential part of the resolvent is equated to (45) for|arg s| = π/2
(as the error function tends to unity).

Using the Debye expansions for the Bessel functions, they wrote down (BH
equation (61))

f (exp)
m (s) ' −2

√
m2+ s2

s2

∞∑
p=1

(−i)p(−1)mp e−pF (46)

F(s,m) = 2
√
m2+ s2+ 2m ln

(
s

m+√m2+ s2

)
. (47)

The term infm(s) was then substituted in the Poisson-summed expression for the resolvent.
Applying the method of steepest descent to the subsequent integrals ing(s), the saddle
points are given by

arccos
m√
E
= πµ

p
. (48)

This corresponds to the angle between a chord of a periodic orbit and the tangent to the
circle where the chord cuts the boundary. The parametersp and µ are the number of
bounces and turns about the origin, respectively, of an orbit of length

Lc = 2p sin
πµ

p
. (49)

With this in mind, we consider the wedge resolvent (29) term-by-term, at exponential order.
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Term A undergoes a Stokes phenomenon which generates a contribution of the form (46)
with m = 0

g(exp)(s) ∼ i

2s
e−2s . (50)

This is entirely consistent with a Borel summation of the leading term of (44), thereby
providing a check on the dominant form ofcr .

The only Stokes phenomenon which does not cancel in the second term (B) arises from
the integrand of

γ

π

∞∑
µ=1

∫ ∞
0

dm
I ′m(s)
sIm(s)

cos 2γmµ. (51)

The contribution to the wedge resolvent from this is (cf (46) and BH equation (62))

g(exp)(s) = γ

π

∞∑
p=1

(−i)p
∞∑
µ=1

∫ ∞
0

dm

√
m2+ s2

s2
eim(πp−2γµ)−pF(s,m). (52)

The integrand has saddles at positions given by

arccos
m√
E
= γµ

p
(53)

(cf (48)). The exponent for these values ofm is −sLw where we have defined (cf (49))

Lw = 2p sin
γµ

p
. (54)

Hereµ has a quite different interpretation to that of the circle. Whilep still counts the
number of bounces off the curved (‘circular’) part of the boundary, thisµ is half the (always
even) number of bounces off the straight edges of the wedge. (A corner collision counts as
both a straight edge and an arc bounce.) A selection of orbits in the wedge billiard is shown
in figure 5. Note that each orbit in the wedge only physically exists up to an associated
angleγ .

The length-2 orbit is special: it is not described in the same terms as the others. There
are shorter orbits (e.g. whenp = 1), but they cannot be present in the Weyl series for two
reasons. First, if they were, they would dominate the highcr . Second, the algebraic form
of B (37) shows that none of the(p, µ) orbits contribute to the late terms.

The exponential arising from a Stokes phenomenon ins due to a(p, µ) orbit is

γ (−i)p+1L
3/2
w

4p2
√

2πs
e−sLw (55)

where we needπp > 2γµ for the orbit to exist. It is easy to see that each(p, µ) combination
corresponds to a one-parameter family of orbits. For an ordinary stationary path (osp), the
following proportionality holds (Balian and Bloch 1972, p 101, cf p 153):

g(exp)
osp (s) ∝ sq0/2−1 e−sL. (56)

Here the degeneracy factorq0 = 1 gives the requireds−1/2 behaviour in (55).
Similar analysis of (50) reveals that, forγ 6= π , there is a one-parameter family of

2-bounce orbits between the polygonal corner and the arc. This can be understood by
recalling that, for an orbit which encounters a singularity in the boundary of orderζ ,

g
(exp)
sing (s) ∝ s(q0−1)/2−ζe−sL (57)

(Balian and Bloch 1972, p 103, cf p 153). Here the polygonal corner givesζ = 1, soq0

must be 1 to generate thes−1. (Whenγ = π this orbit joins two smooth sections of the



1922 C J Howls and S A Trasler

Figure 5. A selection of orbits in the wedge billiard, forγ = 1/2. We use the notation(p, µ),
wherep is the number of bounces off the curved edge andµ half the number off the straight
edges.

boundary and is isolated, so for this angle only we use (56) withq0 = 0 to maintain the
s−1 of (50).)

Therefore, we note that the algebraic order of the former of these two exponential terms,
at O(s−1/2), is larger than the latter, at O(s−1). That is, the most dominant orbits in the
Weyl series and the periodic orbit corrections are not necessarily the same.

There is a further exponentially-small contribution from the higher harmonics of B,
discarded as irrelevant to the Weyl series (see appendix A). These relate to orbits of lengths
2γ and 2π (and their repeats). The former is certainly the length of a whispering-gallery
mode (p → ∞, µ = 1) for the wedge. The latter may be a memory of the circular
symmetry. We do not explore this orbit further.

Term C contains none of the higher harmonics of the Poisson sum, so it does not generate
any exponential circular periodic orbit contributions. However, it does undergo a Stokes
phenomenon but, since the relevant saddle in the expansion of (52) lies atm = −s2, to
leading order the integral (withµ = 0) evaluates to zero. Consequently, with the exception
of the 2π -orbit above, any suggestion that the wedgereally remembers its circular heritage
at exponential (periodic orbit) order appears to be destroyed.

The situation is summarized in table 3. Perversely, the only physical wedge orbit that
contributes to the Weyl series is the radial one with length 2. Indeed, this appears to
be the only orbit present at both algebraic and exponential scales. Subdominant algebraic
contributions to (5) arise from (longer) circle orbits. (Note that whenγ is a rational fraction
of π , these could be interpreted as repetitions of the shorter wedge orbits.)
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Table 3. Contributions to the resolvent at different orders from different orbit classes.

Length Algebraic Exponential (via Stokes)

Lw = 2p sin(γµ/p) X
Lc = 2p sin(πµ/p) X
2 X X

It is interesting to note what happens whenγ = π (the semicircle). The terms B and
C combine to produce exactly half the full circle result while A remains undisturbed to
account for the length-2 orbit. This makes sense: a semicircle has (obviously) half the area
of a circle, manifested in the algebraic termc1 of the Weyl series. In addition, the families
of orbits (seen in the exponentials) are the same, bar the (extra) length-2 orbit, because the
straight edge in the former is a line of symmetry in the latter.

The 2-bounce orbit (term A) survives asγ increases throughπ , becoming a diffractive
orbit which scatters from the polygonal corner. Asγ approaches 2π the circle result is not
recovered. This can been seen most easily from the example in figure 6. There is no(3, 1)
orbit in the 2π -wedge billiard: the path drawn is a(6, 1) orbit and a particle moving along
it traces out the triangle twice (once in each direction) before it repeats, rather than once as
it would in the plain circle.

Figure 6. The ‘triangle’ orbit in the 2π -wedge billiard is twice as long as its equivalent in the
circle.

5. Discussion

This paper has demonstrated formally that a factorial-over-power behaviour for the late
terms of the Weyl series survives in the case of the wedge billiard, where the boundary is
not smooth. Moreover, we have been able to uncover the higher-order corrections to the
dominant asymptotic form. They are consistent with the extended conjecture (5).

The polygonal cornerγ does not dominate the higher orders of the Weyl series,
contributing only as a scaling factor in the circle memory terms. It does, however,
generate the expected periodic orbit correction terms in the semiclassical expansion of
the resolvent for real energies (via Stokes phenomena in term B (31)) together with a non-
local whispering-gallery mode. The presence of the non-polygonalπ/2 corners is felt at all
orders through term A (30). A rigorous proof of these conjectures is still lacking.
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It is clear that only one of the wedge orbits contributes to the asymptotics of the late
terms. That this dominant orbit (l = 2) is not the shortest might not appear surprising in the
context of the work of BH on ‘two-bulge’ (so-called ‘bonio’) billiards, but it should be noted
that these wereconcavedomains withC∞ boundaries. The graphical selection mechanism
proposed in that paper explained this apparent anomaly. Here we have aconvexbilliard, but
with corners. We surmise that the corners contribute singularities in the analytic behaviour
of the regularized resolvent which, at least, force the shorter orbits onto a different Riemann
sheet of the path integral representation (Balian and Bloch 1972, 1974, Voros 1983). From
the Darboux theorem (Dingle 1973), these shorter orbit singularities are then invisible at
the leading asymptotic level of the higher orders of the Weyl series expansion. This is
examined elsewhere (Howls and Trasler 1998).

Note that although thel = 2 orbit dominates the Weyl series, it does not dominate the
periodic orbit corrections.

Clearly, since the shorter orbits have more than just two bounces, the graphical technique
of BH for predicting the globally dominant orbit (cf Alonso and Gaspard 1994) is not
possible for the wedge. Furthermore, with the apparent dependence on the Weyl series on
the circle memory, there is clearly a need for a better selection mechanism via the singularity
structure of the resolvent. This could come from a consideration of the functional equations
satisfied by the resolvent but, as is known (Voros 1992), such equations are only possible
on a case-by-case (or class-by-class) basis (quite apart from the problems associated with
the accumulation of singularities at whispering-gallery modes).

The problem of the selection mechanism leads to an obvious question. Which is the
more fundamental: the functional equations which determine the singularity structure, or
the singularity structure from which the functional equations may be estimated or derived?
The answer to that question will depend on the particular goal. If the late terms can be
calculated, then a basic method for a limited determination of the path integral sheet structure
is available from the hyperasymptotics of multiple integrals (Howls 1997).

Acknowledgments

One of us (SAT) acknowledges support from the EPSRC. CJH thanks the Royal Society,
the JSPS and the Research Institute for Mathematical Sciences, Kyoto, Japan (where some
of this work was carried out) for financial support.

Appendix A. The sum of BesselK expansions (37)

We use the expansion (Abramowitz and Stegun 1972)

K1(z) ∼
√
π

2z
e−z
(

1+
∞∑
j=1

kj

zj

)
(A.1)

to replace the Bessel functions in equation (37) where the coefficientskj can be written

kj = (1/2+ j)!
2j j !(1/2− j)! . (A.2)

Formally, we have that

γ

πls

∞∑
µ=1

K1(lsµ)

µ
∼ γ

ls
√
π

∞∑
j=0

(1/2+ j)!
j !(1/2− j)!(2ls)j+1/2

p(3/2+ j, e−ls ) (A.3)
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wherep(n, x) is the polylogarithm (Wolfram 1996). We apply this result to (37) forl = 2γ ,
2π . To leading order forx < 1 andn > 1,

p(n, x) ∼ x. (A.4)

(A.3) formally generates a series of exponential prefactors, whose dominant form is
e−lss−3/2.

Appendix B. Asymptotic expansion ofI ′0(s)/sI0(s)

For |arg s| < π/2 the large|s| expansions ofI0(s) andI ′0(s) are (Abramowitz and Stegun
1972)

I0(s) ∼ es√
2πs

∞∑
n=0

dn

sn
I ′0(s) ∼

es√
2πs

∞∑
n=0

d ′n
sn

(B.1)

where

dn = (r − 1/2)!2

2rπr!
d ′n = −

(4r2− 1)(r − 3/2)!2

2r+2πr!
. (B.2)

The ratio of the Bessel functions can be written as a power series. Standard techniques lead
to the recurrence relation

I ′0(s)
I0(s)

=
∞∑
n=0

hn

sn
(B.3)

hn = d ′n −
n−1∑
i=0

hidn−i h0 = 1. (B.4)

Term A of (29) is equal to

−1

4

∞∑
r=1

hr−1

sr
. (B.5)

Appendix C. Neville table algorithm

Our conjecture (5) gives an expansion of the Weyl coefficients over a large set of periodic
orbits lj . The leading-order contribution will arise from the smallest|lj | in this set (with
index j = 2 in the wedge), so we postulate

cr ∼ (r − 2)!

lr2

{
α
(2)
0 +

α
(2)
1 l2

r − 2
+ α

(2)
2 l22

(r − 2)(r − 3)
+ · · ·

}
r →∞ (C.1)

and seek values for theα(2)k . We follow Voros (1983) and first defineAr to denote the
contents of the braces above, then

S
(0)
r,1 = Ar (C.2)

S(0)r,p =
1

p − 1
{(r − p)S(0)r,p−1− (r − 2p + 1)S(0)r−1,p−1}. (C.3)

Equations (C.2) and (C.3) will give us an approximation to the first coefficient we want to
find, namelyα(2)0 . For the higher-order corrections, we further define

S
(k)

r,1 =
r − k − 1

l
(S
(k−1)
r,1 − α(2)k−1) (C.4)

S(k)r,p =
1

p − 1
{(r − p − k)S(k)r,p−1− (r − 2p − k + 1)S(k)r−1,p−1}. (C.5)
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If (C.1) is correct, then at each level of recursion the approximationsS(0)r,p converge with the
iteratorp as

S(k)r,p = α(2)k +O

(
1

rp

)
. (C.6)

There is a practical limit to the accuracy of this scheme, because we cannot take the limiting
case of infiniter. In general, asp increases, the error inS(k)r,p will only diminish so far
before effects due to the other periodic orbitslj become significant. The closer the next-
smallest is to the dominating orbit, the less effective this algorithm is. In term A, this
polluting influence is simply the first repetition of the 2-orbit and so is a factor O(2−r )
smaller. UsingMathematicawe perform all calculations in integer arithmetic, eliminating
truncation errors.

Appendix D. Expanding thehr

Making thej = 0 term from the sum in (B.4) explicit, we have the following definition for
hr :

hr = −2(r − 1/2)!2

2rπr!
− (r − 1/2)!(r − 3/2)!

2rπr!
−

r−1∑
j=1

hj (r − j − 1/2)!2

2r−jπ(r − j)! . (D.1)

By inspection, we notice that the second term is of orderr smaller than the first. The first
and last terms in thej -sum are the same magnitude inr, of the same order as the second
term of (D.1). This suggests that as we uncover each next-order term, we need to peel away
terms from both ends of thej -sum.

Extracting these terms so that the sum overj runs from 2 tor − 2, replacinghr−1

using (D.1) and rearranging that sum so it runs over the same values as the other, we have

hr = − (r − 1/2)!2

2r−1πr!
+ 3(r − 3/2)!2

2r+1π(r − 1)!
− (r − 5/2)!2

2r+2π(r − 2)!
− (r − 1/2)!(r − 3/2)!

2rπr!

+ (r − 3/2)!(r − 5/2)!

2rπ(r − 1)!
−

r−2∑
j=2

hj (r − j − 1/2)!2

2r−jπ(r − j)!

×
{

1− r − j
4(r − j − 1/2)2

}
. (D.2)

Having foundh1 = −1/2, h2 = −1/8 from (B.4), proceeding to the next level we eventually
obtain

hr = − (r − 1/2)!2

2r−1πr!
+ 3(r − 3/2)!2

2r+1π(r − 1)!
+ 11(r − 5/2)!2

2r+4π(r − 2)!
+ 3(r − 7/2)!2

2r+5π(r − 3)!

− (r − 9/2)!2

2r+6π(r − 4)!
− (r − 1/2)!(r − 3/2)!

2rπr!
+ (r − 3/2)!(r − 5/2)!

2r+2π(r − 1)!

+ (r − 5/2)!(r − 7/2)!

2r+5π(r − 2)!
−

r−3∑
j=3

hj (r − j − 1/2)!2

2r−jπ(r − j)!

×
{

1− r − j
4(r − j − 1/2)2

− 7(r − j)(r − j − 1)

32(r − j − 1/2)2(r − j − 3/2)2

}
. (D.3)
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Now we make considerable use of the Stirling approximation (Abramowitz and Stegun 1972)

z! ∼
√

2π exp{−z+ (z+ 1
2) ln z} asz→∞ |arg z| < π/2. (D.4)

The first term in (D.3) is at least O(r) larger than the rest, so we can identify the first term
of hr−1 with that of (44). Thus, to leading order inr,

(r − 3/2)!2

(r − 1)!
∼ (r − 2)!. (D.5)

Starting with the hypothesis

(r − 1/2)!2

r!
∼ (r − 1)! + U1(r − 2)! + U2(r − 3)! + · · · (D.6)

based on the identification (D.5), we find that

U1 = lim
r→∞

(r − 1/2)!2− r!(r − 1)!

r!(r − 2)!
= −1

4
(D.7)

after a little algebra. Continuing to the next stage,

U2 = lim
r→∞

(r − 1/2)!2− r!(r − 1)! − U1r!(r − 2)!

r!(r − 3)!
= 9

32
. (D.8)

A similar result can be obtained starting with

(r − 1/2)!(r − 3/2)!

r!
∼ (r − 2)! + V1(r − 3)! + V2(r − 4)! + · · · . (D.9)

As above, the limit is taken and we obtain the value

V1 = lim
r→∞

(r − 1/2)!(r − 3/2)! − r!(r − 2)!

r!(r − 3)!
= −3

4
. (D.10)

That each limit is finite and non-zero suggests that the chosen hypotheses (D.6) and (D.9)
are valid asymptotically. Substituting these for the ratios of factorials in (D.3), we find the
leading-order behaviour of the coefficientshr :

hr ∼ − (r − 1)!

2r−1π
+ (r − 2)!

2rπ
+ 3(r − 3)!

2r+2π
+ 13(r − 4)!

2r+3π
+ · · · (D.11)

⇒ cr ∼ 1

π

(r − 2)!

2r
− 1

4π

(r − 3)!

2r−1
− 3

32π

(r − 4)!

2r−2
− 13

128π

(r − 5)!

2r−3
− · · · (D.12)

in the resolvent (29).
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